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ABSTRACT
Cross-domain recommendation aims to leverage heterogeneous
information to transfers knowledge from a data-sufficient domain
(source domain) to a data-scarce domain (target domain). Existing
approaches mainly ignore the modeling of users’ domain specific
preferences on items. We argue that incorporating domain-specific
preferences from the source domain will introduce irrelevant infor-
mation that fails to the target domain. Additionally, directly combin-
ing domain-shared and domain-specific informationmay hinder the
target domain’s performance. To this end, we propose𝐶2𝐷𝑅, a novel
approach that disentangles domain-shared and domain-specific
preferences from a causal perspective. Specifically, we formulate
a causal graph to capture the critical causal relationships based
on the underlying recommendation process, explicitly identifying
domain-shared and domain-specific information as causal irrele-
vant variables. Then, we introduce disentanglement regularization
terms to learn distinct representations of the causal variables that
obey the independence constraints in the causal graph. Remarkably,
our proposed method enables effective intervention and transfer
of domain-shared information, thereby improving the robustness
of the recommendation model. We evaluate the efficacy of 𝐶2𝐷𝑅
through extensive experiments on three real-world datasets, demon-
strating significant improvements over state-of-the-art baselines.
The code is available at: https://github.com/KongMLin/C2DR.
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1 INTRODUCTION
Personalized recommendation systems play a crucial role in the
evolution of various online applications, including e-commerce [13],
search engines [19] and conversational systems [6]. Numerous rec-
ommender models have been developed based on the use of rich
information captured from historical user interactions [5]. However,
the scarcity of user-item interaction records often poses a challenge
in accurately identifying user preferences [11]. Additionally, tra-
ditional recommendation systems encounter difficulties for new
users who have no any prior interaction history, giving rise to the
prevalent cold-start problem [2]. With users increasingly participat-
ing in multiple domains, there is a potential to utilize information
from different domains to alleviate the challenges of data sparsity
and cold start [3]. This insight has led to the development of the
Cross-Domain Recommendation (CDR).

In the CDR family, previous works can be divided into two main
branches based on their approaches to transferring knowledge be-
tween domains. (1) Transfer Learning-based approaches focus on
leveraging the knowledge learned in the source domain to improve
recommendation performance in the target domain [8, 24]. In partic-
ular, feature-based transfer learning [7, 36] transfers useful features
by mapping or sharing the feature space between the two domains.
Model-based transfer learning [1] is initially trained in the source
domain and then fine-tuned or adapted to the target domain us-
ing shared information (e.g., overloaded users or items). (2) Shared
representation learning-based approaches aim to learn a common
latent space that captures the intrinsic relationships between users
and items across domains. Typically, matrix factorization-based
methods [14] factorize the interaction matrices of the user-item
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Figure 1: (a): An example of user preferences in Book and
Film domain. (b): 𝐶2𝐷𝑅 utilizes disentangled domain-shared
information and domain-specific factors for recommenda-
tions.

from the source and target domains into a shared low-dimensional
latent space. Some works [10, 12] utilize deep neural networks to
learn complex, non-linear representations of users and items across
domains. They can automatically extract and transfer high-level
features, such as item content or user behavior patterns, from the
source to the target domain.

In retrospect, the aforementioned technical frameworks have
demonstrated promising results within their respective branches.
It becomes evident that existing approaches often place excessive
emphasis on the assumption of domain in-variance [1, 2], presum-
ing that the data distribution remains unchanged in each domain.
However, this assumption can be problematic, as the characteristics
and distributions of user/item data can vary significantly across
domains. Consequently, blindly transferring knowledge without
accounting for these differences can result in transferring the ir-
relevant information. Motivated by recent progress [27], we fur-
ther consider a challenging question in CDR: What information
should be transferred? We recognize that user preferences are ex-
pressed through distinct behaviors in different domains, transfer-
ring domain-shared information can yield positive effects for
other domains, while transferring domain-specific information
may introduce negative transfer issues. To illustrate this point, we
provide a toy example in Figure 1, consisting of two domains: "Film"
and "Book," each containing several domain-shared information
and domain-specific information. Intuitively, shared user pref-
erences such as "Story Topic" and "Category" are domain-invariant.
This suggests that a user’s taste in these preferences is likely to
be similar and stable across multiple domains. On the other hand,
specific user preferences such as "Filmmakers" and "Literary Genre"
provide precise intra-domain information that does not contribute
to other domains. Therefore, the optimal approach is to capture and
transfer the most relevant factors, specifically the domain-shared
information, to boost recommendations in other domains.

In this paper, we explore the disentanglement of domain infor-
mation from a fundamental perspective — causality, which has
received little scrutiny in recommender systems. We try to eluci-
date how domain-share and domain-specific information serves as
causal variables to influence the effects observed across and within
individual domains. To achieve this, we propose an innovative

causal-based framework called 𝐶2𝐷𝑅 for robust cross-domain rec-
ommendation. Our approach begins by constructing a causal graph
that provides insights into the important causal connections that
identified casual variables affect the recommendation outcomes.
Furthermore, we develop multiple encoders to learn causal rep-
resentations for specific items, as well as users’ domain-specific
interests within each domain and the domain-shared information
across domains. To disentangle these causal representations, 𝐶2𝐷𝑅
employs a domain classifier with a gradient reverse layer (GRL) to
extract domain-shared information and reweight the representation
space, allowing the separation of a user’s domain-specific interests
within each domain. Ultimately,𝐶2𝐷𝑅 ensures that the gradients of
individual domain loss functions, regarding the representation of
domain-shared information, are mutually orthogonal. This orthog-
onal property facilitates effective intervention and transfer of the
causal variables, thereby enhancing the recommendation system’s
resilience to fluctuations in user behavior or preferences.

2 RELATEDWORK
2.1 Cross-Domain Recommendation
Cross-domain recommendation (CDR) addresses data sparsity by
leveraging overlapping user or item information from source do-
mains [34]. This enhances performance in the target domain even
with limited data. CDR methods can be broadly categorized into
three groups: Collective Matrix Decomposition: JCSL[18] em-
ploys a similarity matrix based on clustering and overlapping users
for regularization. Embedding and Mapping: EMCDR [24] com-
bines matrix factorization and Bayesian personalized ranking using
a nonlinear mapping function based on a multi-layer perceptron.
SSCDR[8] exploits overlapping users and items from the source
domain to train the mapping function. Deep Knowledge Trans-
fer: CSN [15] combines feature maps in a high-dimensional space
for bidirectional knowledge transfer. CoNet [7]introduces cross-
connection units and a shared transfer matrix for fine-grained and
sparse knowledge transfer, though it can lead to negative transfers.
A recent approach, MADD [31], presents the domain disentangle-
ment framework, using the attention mechanism to disentangle
raw user embeddings into domain-invariant and domain-specific
features, but is sensitive to training strategies.

2.2 Causal Inference in Recommender System
Causal inference has gained significant attention in the construction
of robust machine learning models, including its application to rec-
ommendation systems. A comprehensive framework for conducting
causal analysis in recommendation systems is presented in [29].
Various specific applications within recommendation systems have
utilized causal inference techniques. Schnabel [21] introduces the
inverse propensity score (IPS) method to handle missing-at-random
data. Wang et al. [26] propose the dual robust (DR) estimator and
joint optimization method to address large variance in the IPS
method. Causal inference techniques have also been used to mit-
igate bias in recommendation systems [25, 32]. Yuan et al. [30]
tackle position bias in click-through rate (CTR) prediction using a
multi-valued treatment approach. Sato et al. [20] discuss user self-
selection bias and highlighted biased estimates even with varying
sample sizes. Wei et al. [28] leverage counterfactual reasoning to
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eliminate popularity bias. Another relevant work [27] uses general
knowledge from multiple source domains to improve performance
in the target domain. Building upon these findings, we further lever-
age the structure causal model to develop a robust cross-domain
recommendation (CDR) approach.

3 PRELIMINARY
In this research work, we consider a generalized Cross-Domain
Recommendation (CDR) scenario involving two domains that have
a common set of users. The data from the source domain is denoted
as D𝐵 = (I𝐵,U𝐵,Y𝐵), and the data from the target domain is
denoted as D𝐴 = (I𝐴,U𝐴,Y𝐴). Here, I, U, and Y represent
the item set, user set, and interaction set, respectively, for each
domain. Specifically, we have U𝐴 ⊆ U𝐵 and 𝐼𝐵 ∩ I𝐴 = ∅. User
input features are denoted as 𝑓 𝐴𝑢 ∈ X and 𝑓 𝐵𝑢 ∈ X for the target
and source domains, respectively. Item input features are denoted
as 𝑓 𝐴

𝑖
∈ X and 𝑓 𝐵

𝑖
∈ X in their respective domains, where X de-

notes the feature space. Given the observed interactions matrices
Y𝐵 ∈ {0, 1} | I𝐵 |× |U𝐵 | and Y𝐴 ∈ {0, 1} | I𝐴 |× |U𝐴 | in both domains,
where each element 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 indicates whether user 𝑖 ∈ 𝑈 has in-
teracted with item 𝑗 ∈ 𝐼 in the interaction set Y, the goal of our
𝐶2𝐷𝑅 model is to learn disentangled representations of domain-
shared information 𝑋 , domain-specific information X∗, and item
representations I∗ in both domains, where ∗ ∈ {𝐴, 𝐵} 1. By trans-
ferring the domain-shared representations 𝑋 , we aim to enhance
the recommendation performance in both domains.

4 METHODOLOGY
In this section, we first detail the causal view of the cross-domain
recommendation process, followed by its rationality for disentan-
gling domain-specified and domain-shared information. Then, we
introduce the proposed 𝐶2𝐷𝑅 framework.

Figure 2: Cross domain recommendation casual graph. This
cutting off of edges represents the elimination of causal rela-
tionships.

4.1 Causal Look at CDR
Causal Graph. The causal graph is a directed acyclic graph denoted
as 𝐺 = 𝑉 , 𝐸, where 𝑉 represents the set of variables, and 𝐸 denotes
the causal relations among variables [17]. In the causal graph, a
1To simplify the notation, we use ∗ to indicate the operations performed in both
domain A and B.

capital letter (e.g., 𝑋 ) signifies a variable, while a lowercase letter
(e.g., 𝑥 ) represents its observed value. An edge in the graph indicates
that the ancestor node is a cause (𝑋𝐴), and the successor node is an
effect (𝑌𝐴). To begin, we abstract the causal graph of most existing
cross-domain recommendation models, as illustrated in Figure 2. In
this representation, (𝐷) corresponds to the domain indicator, which
is modeled as a binary variable in our task. (𝑋 ) represents the
embedding of the domain-shared interest (e.g., a user who enjoys
love stories tends to watch romantic movies). (𝑋𝐴) signifies the
embedding of the user’s domain-specific interest in domain 𝐴 (e.g.,
a user who appreciates horror movies may also read a significant
amount of poetry). (𝐼𝐴) denotes the embedding of a specific item in
domain 𝐴. Finally, (𝑌𝐴) represents the ranking score in domain 𝐴.
It is important to note that the example provided here for domain
𝐴 holds true for domain 𝐵 as well.

Causal Relationships. Let us now elucidate the causal relation-
ships within the causal graph, where the paths {𝐷,𝑋𝐴, 𝑋, 𝐼𝐴}
→ 𝑌𝐴 represent the direct effects of the domain indicator, user-
related factors (i.e., domain-shared interest and user’s domain-
specific interest), and item on the ranking score. Specifically, among
the variables 𝐷,𝑋𝐴, 𝑋, 𝐼𝐴 , the domain-shared information 𝑋 should
be independent of the domain-specific information 𝑋𝐴 . Consider-
ing that the domain-shared information 𝑋 represents high-level
preferences that remain constant across domains, 𝑋 should be inde-
pendent of the domain indicator 𝐷 . Moreover, it is crucial to avoid
transferring domain-specific information to different domains (e.g.,
𝑋𝐵 → 𝑌𝐴), as such transfers may result in negative effects on the
recommendation process and impair accurate estimation of the
ranking score. To summarize the causal relationships in the causal
graph, we have the following key operations:

Domain-shared information extraction: We ensure that the
domain-shared interest representations, denoted by 𝑋 , remain in-
dependent of the domain indicator 𝐷 . This independence indicates
that the distribution of domain-shared interest representations does
not change with different domains, i.e., 𝑃 (𝑋 |𝐷 = 0) = 𝑃 (𝑋 |𝐷 = 1) .
By cutting off the causal relation 𝐷 → 𝑋 , we achieve statistical
independence between 𝑋 and 𝐷 (i.e., 𝐷 ⊥ 𝑋 ).

Domain-specific information extraction: We disentangle
the user’s domain-shared interest representations (𝑋 ) from their
domain-specific interests in a particular domain (𝑋𝐴). Similarly, we
disentangle 𝑋 from the domain-specific interests in other domains
(𝑋𝐵 ). This disentanglement allows us to achieve statistical indepen-
dence between 𝑋 and 𝑋𝐴 , as well as between 𝑋 and 𝑋𝐵 . By cutting
off the causal relations 𝑋 → 𝑋𝐴 and 𝑋 → 𝑋𝐵 , we ensure the
independence of these variables (i.e., 𝑋𝐴 ⊥ 𝑋𝐵, 𝑋 ⊥ 𝑋𝐵, 𝑋 ⊥ 𝑋𝐴).

Domain irrelevant information control: To maintain the
accuracy of the recommendation process, we control the trans-
fer of domain-specific information from one domain to another.
We want to avoid negative transfer effects on the recommenda-
tion process. Therefore, we enforce the independence between the
domain-specific interest in one domain (𝑋𝐵 ) and the ranking score
in another domain (𝑌𝐴). By cutting off the causal relation𝑋𝐵 → 𝑌𝐴 ,
we prevent unwanted interference and maintain the integrity of
the recommendation process (i.e.,𝑋𝐵 ⊥ 𝑌𝐴).
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By incorporating these causal operations into the causal graph,
we aim to disentangle the different factors that influence cross-
domain recommendation. This disentanglement allows us to en-
hance the transferability of the recommendation system, improve
the accuracy of ranking score estimation, and mitigate negative
transfer effects. Ultimately, our approach leads to a more accu-
rate and robust recommendation system that can adapt to various
domains and provide reliable recommendations to users.

4.2 𝐶2𝐷𝑅 framework
Figure 3 provides a high-level overview of 𝐶2𝐷𝑅, which follows
the causal graph in Figure 2 to learn the causal representation of
the user’s domain-specific interests within each domain and their
domain-shared interests across domains. The framework consists of
multiple steps. Firstly, it trains multiple encoders to acquire repre-
sentations for causal variables while employing a domain classifier
to extract domain-shared information. Secondly,𝐶2𝐷𝑅 incorporates
multiple objectives and learns a weight vector, enabling the inde-
pendent treatment of causal variables (𝑋𝐴 ⊥ 𝑋𝐵, 𝑋 ⊥ 𝑋𝐵, 𝑋 ⊥ 𝑋𝐴).
Lastly, 𝐶2𝐷𝑅 employs an orthogonalization constraint to mitigate
negative transfer of domain-irrelevant information.

4.2.1 Causal representation learning. As introduced above, we
utilize multiple encoders to learn causal embedding for various
user interests across domains. Specifically, we consider the user’s
domain-shared interest 𝑋 ∈ R |U |×𝑑 , which represents their in-
terests that are common across different domains. Additionally,
we examine the user’s domain-specific interests in each domain,
denoted as 𝑋𝐴 ∈ R |U |×𝑑 and 𝑋𝐵 ∈ R |U |×𝑑 for domains A and
B, respectively. Furthermore, we incorporate item representations
𝐼𝐴 ∈ R | I𝐴 |×𝑑 and 𝐼𝐵 ∈ R | I𝐵 |×𝑑 for domain A and domain B, where
|I𝐴 | and |I𝐵 | represent the number of items in each domain. To
obtain these embedding, we employ the following operations:

UserDomain-Shared Interest:Weuse an encoder𝑋 = 𝐹 (𝑒𝑚𝑏 (
𝑓 𝐴𝑢 ⊕ 𝑓 𝐵𝑢 );𝜃𝑠 ) to capture the user’s domain-shared interest 𝑋 . This
encoder takes as input the concatenation of the domain-specific user
features 𝑓 𝐴𝑢 and 𝑓 𝐵𝑢 , and applies the embedding operation 𝑒𝑚𝑏 (·) to
obtain the embedded representation. The encoder is parameterized
by 𝜃𝑠 .

User Domain-Specific Interests: Similarly, we use the encoder
𝑋∗ = 𝐹 (𝑒𝑚𝑏 (𝑓 𝐴𝑢 ⊕ 𝑓 𝐵𝑢 );𝜃∗) to capture the user’s domain-specific
interests in each domain. The encoder is parameterized by 𝜃∗.

Item Representations: The encoder 𝐼∗ = 𝐹 (𝑒𝑚𝑏 (𝑓 ∗
𝑖
);𝜙∗) is

employed to capture the representation of items in each domain.
This encoder takes the item features 𝑓 ∗

𝑖
as input and applies the

embedding operation 𝑒𝑚𝑏𝑖 (·).
The function 𝐹 (·) represents the information encoder, which can

be implemented using various existing structures such as attention
mechanisms [16] and graph neural networks [12]. These structures
are utilized to capture users’ personalized interaction information
effectively. The embedding operation 𝑒𝑚𝑏 (·) is responsible for em-
bedding the input features. Based on the learned representation for
domain-shared information, we calculate the predicted user-item
interaction result 𝑦𝑠∗ in each domain as follows:

𝑦𝑠
∗ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (H (𝑋 ⊕ 𝐼∗;𝜓∗)), (1)

where ⊕ denotes the aggregation operation, H(·;𝜓∗) represents
a ranking model that is implemented using a multi-layer MLP
parameterized by𝜓∗. Similarly, the predicted user-item interaction
result 𝑦∗ based on the learned representation for domain-specific
information can be calculated as follows:

𝑦∗ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (H (𝑋∗ ⊕ 𝐼∗;𝜓∗)). (2)

Consequently, trainable parameter set𝜃𝑠 , 𝜃∗, 𝜙∗,𝜓∗ can be trained
using supervised learning to recover the historical interactions in
each domain. We use a binary cross-entropy (BCE) loss [34] to train
our model:

L𝐵𝐶𝐸 =
∑︁

∗∈{𝐴,𝐵}

∑︁
𝑦∗∈{�̂�∗,𝑦𝑠

∗ }
−𝑦∗ log𝑦∗−

(
1 − 𝑦∗

)
log

(
1 − 𝑦∗

)
, (3)

where ∗ indicates the operations performed in both domain A and
B. 𝑦 represents either 𝑦𝑠∗ or 𝑦∗, and 𝑦∗ represents the user-item
ground-truth matching score in each domain.

Note that the above training strategy has shown promise in
capturing relationships within a single-domain scenario, but it
faces challenges in explicitly separating domain-shared and domain-
specific information in a cross-domain setting. This observation
motivates us to develop a more effective training strategy for dis-
entangling causal representations and extracting meaningful repre-
sentations of user interests across different domains.

4.2.2 Causal representation disentanglement. Following the
causal relationship described in subsection 4.1, it is crucial to ensure
that the user’s domain-shared interest representation (X) contains
domain-invariant information that does not reveal specific domain
information. For example, the semantic topic "Romantic" can be
associated with both the "Movie" and "Film" domains. To achieve
this, we draw inspiration from a domain adaptation technique [4]
and label the learned representations 𝑋𝐴 and 𝑋𝐵 with the value
’1’, while labelling 𝑋 with the value ’0’. We then train a domain
classifier H𝐷 (·;𝜓𝐷 ) to predict the label as shown in the following
equation:

𝑑 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (H𝐷 (𝐺𝑅𝐿(·);𝜓𝐷 )), (4)

where (·) represents the learned causal embedding of the user’s
domain-shared interest and domain-specific interest. Here, we uti-
lize the gradient reversal layer (GRL) to extract the domain-shared
information by confusing the domain classifier during the training
process of the encoder 𝑋 = 𝐹 (·;𝜃𝑠 ). The GRL acts as an identity
transformation during forward propagation, i.e., GRL(𝑋 ) = 𝑋 ,
but during backpropagation, it assigns the gradients as a nega-
tive constant, effectively reversing the sign of the gradients, i.e.,
𝜕GRL(𝑋 )

𝜕𝜃𝑠
= −𝐼 . This reversal masks force the encoder 𝑋 = 𝐹 (·;𝜃𝑠 )

to learn domain-invariant information, making it difficult for the
domain classifier to distinguish between the source and target do-
mains. Next, we train the domain classification loss using the fol-
lowing equation:

L𝑑𝑜𝑚𝑎𝑖𝑛 =
∑
∗∈{𝐴,𝐵} −𝑑∗ log𝑑∗−2 (1 − 𝑑𝑠 ) log

(
1 − 𝑑𝑠

)
, (5)where

𝑑∗ and 𝑑𝑠 represent the ground truth labels for the instances from
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Figure 3: The training procedure of 𝐶2𝐷𝑅. 1. 𝐶2𝐷𝑅 trains multiple encoders and employs a domain classifier with a gradient
reverse layer (GRL) to extract domain-shared information effectively. 2. 𝐶2𝐷𝑅 learns a weight vector that re-weights the
representation space to enable the independent treatment of causal variables. 3. 𝐶2𝐷𝑅 mitigates negative transfer of domain
irrelevant information by enforcing orthogonality between the domain-shared information 𝑋 and the gradients of the loss
function in each domain.

domain-shared information and domain-specific information. Simi-
larly, 𝑑∗ and 𝑑𝑠 refer to the outputs of the domain classifier when
given 𝑋𝐴 , 𝑋𝐵 , and 𝑋 as inputs, respectively.

4.2.3 Causal embedding independent treatment. We treat the
independence of causal embedding from both spatial geometry and
statistical distribution perspective, so as to remove the undesired
variable correlations, as described in subsection 4.1.

From a spatial geometry standpoint, we introduce a vector or-
thogonal regularizer to enforce orthogonality between the variables
𝑋 , 𝑋𝐴 , and 𝑋𝐵 . This regularizer encourages the embedding vectors
to be mutually orthogonal, promoting their independence. We cal-
culate the vector orthogonal regularizer Lvec as follows:

Lvec =
𝑁∑︁

cosine(𝑋,𝑋𝐴) + cosine(𝑋,𝑋𝐵) + cosine(𝑋𝐴, 𝑋𝐵), (6)

where cosine(·, ·) represents the cosine similarity between two
variables.

From a statistical distribution standpoint, since𝑋 ,𝑋𝐴 , and𝑋𝐵 are
continuous random variables, we achieve independence of causal
embedding based on their underlying probability distribution. How-
ever, accurately estimating the probability distribution of these
variables poses a challenge in our task. Therefore, we relax the
strict requirement of statistical independence and instead focus
on constraining the covariance between variables. For example,
to encourage 𝑋 ⊥ 𝑋𝐴 , we enforce the covariance between these
variables to be zero: 𝑐𝑜𝑣 (𝑋,𝑋𝐴) = E(𝑋,𝑋𝐴) − E(𝑋 )E(𝑋𝐴) = 0.
To address this, we draw inspiration from the findings of Shen
et al. [23] and introduce a learnable weight vector Ω ∈ R𝑁 . This
weight vector allows us to modify the distribution by reweighting
the causal variables. By adjusting the weights, we can ensure that

the covariance between the re-weighted causal variables becomes
zero. Consequently, we can calculate the learnable weight Ω based
on the following relationship:

L𝑢 (Ω) =
XA

𝑇 ΣΩX/𝑁 − XA
𝑇 Ω/𝑁 · X𝑇 Ω/𝑁


𝐹

+
XB

𝑇 ΣΩX/𝑁 − XB
𝑇 Ω/𝑁 · X𝑇 Ω/𝑁


𝐹

+
XB

𝑇 ΣΩXA/𝑁 − XB
𝑇 Ω/𝑁 · XA

𝑇 Ω/𝑁

𝐹
= 0,

(7)

where 𝑁 denotes the batch size, ΣΩ ∈ R𝑁×𝑁 is a diagonal matrix
with the values of the weight vector as its diagonal elements and
0 in other positions, and |·|𝐹 represents the Frobenius norm. To
simplify the calculation, we transform Equation (7) and optimize
the learnable weight Ω by minimizing the following objective:

min
Ω

L𝑢 (Ω)

s.t 1
𝑁

𝑁∑︁
𝑖=1

Ω2
𝑖 < 𝜆1,(

1
𝑁

𝑁∑︁
𝑖=1

Ω𝑖 − 1
)2

< 𝜆2,Ω ⪰ 0,

(8)

where Ω𝑖 is the value at the 𝑖-th position of Ω, and 𝜆1 and 𝜆2 are
hyperparameters used to regularize the value of the weight vector.
By solving this optimization problem, we can update the learnable
weight vector Ω. Next, we update the ranking model H(·;𝜓∗) in
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the re-weighted representation space with the following objective:

L∗
𝑛𝑒𝑤 =

𝑁∑︁
𝑖=1

∑︁
∗∈{𝐴,𝐵}

Ω𝑖 (−𝑦∗ log𝑦∗𝑛𝑒𝑤) − Ω𝑖

(
1 − 𝑦∗

)
log

(
1 − 𝑦∗𝑛𝑒𝑤

)
,

(9)

where𝑦new represents the ultimate user-item matching score based
on the causal embedding of domain-shared information 𝑋 and
domain-specific information 𝑋∗:

𝑦∗𝑛𝑒𝑤 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (H (𝑋∗ ⊕ 𝑋 ⊕ 𝐼∗;𝜓∗)) . (10)

4.2.4 Domain irrelevant information control. Note that the
ranking modelH(·;𝜓∗) is jointly trained on both domains (Equa-
tion (9)), it is important to address the challenge of negative transfer
of domain-irrelevant information. This issue becomes particularly
evident when the user-item matching scores (𝑌𝐴 , 𝑌𝐵 ) of the two
domains exhibit a high degree of uncorrelation. In such cases, a
decrease in the loss of one domain can lead to an increase in the
loss of the other domain, thereby hindering the convergence of the
model. To tackle this issue, we propose the adoption of an orthog-
onalization constraint on the gradients of the loss function with
respect to the domain-shared information (𝑋 ) in both domains. The
orthogonalization constraint is defined as:

L𝑔𝑟𝑎𝑑 =

𝑁∑︁
𝑖=1

𝑙norm2

(
∇𝑋L𝐴

𝑛𝑒𝑤∇𝑋L𝐴
𝑛𝑒𝑤

 ·
∇𝑋L𝐵

𝑛𝑒𝑤∇𝑋L𝐵
𝑛𝑒𝑤


)
, (11)

where 𝑙norm2 (·) denotes the L2 norm of vectors. This constraint
enforces orthogonality between the domain-specific information
𝑋𝐵 and the ranking results 𝑌𝐴 , as well as between 𝑋𝐴 and 𝑌𝐵 , i.e.,
𝑋𝐵 ⊥ 𝑌𝐴 and 𝑋𝐴 ⊥ 𝑌𝐵 . By imposing orthogonality, we ensure
that the gradients of the loss function with respect to the domain-
shared information are orthogonal to the gradients with respect
to the ranking results in both domains. Enforcing orthogonality
allows us to control the flow of domain-specific and domain-shared
information, enabling the model to prioritize the relevant aspects
of each domain while mitigating interference from other domains.
As a result, the model can focus on the relevant aspects of each
domain, allowing for more robust recommendation .

4.2.5 Model training and evaluation. The totally loss func-
tion of 𝐶2𝐷𝑅 contains two stages. In the first stage, we update
the domain-shared information encoder 𝐹 (·;𝜃𝑆 ), domain-specific
information encoder 𝐹 (·;𝜃∗),item representation encoder 𝐹 (·;𝜙∗),
and ranking models H(·;𝜓∗) as follows.

L1 = L𝑜 + 𝛼L𝑑𝑜𝑚𝑎𝑖𝑛 + 𝛽L𝑣𝑒𝑐 , (12)

where 𝛼 and 𝛽 are the hyperparameter. In the second stage, we
learn the re-weight vector based on Equation (8), and further update
the ranking models ℎ(·;𝜓∗) as follows.

L2 = L∗
𝑛𝑒𝑤 + 𝛾L𝑔𝑟𝑎𝑑 , (13)

where 𝛾 is the hyperparameter.

5 EXPERIMENTS
In this section, we present the extensive experiments conducted to
evaluate the performance of our proposed𝐶2𝐷𝑅 model and address
the following research questions:

• RQ1: Does 𝐶2𝐷𝑅 achieve significant performance improve-
ments compared to existing CDR methods?

• RQ2: To what extent does each loss component in the 𝐶2𝐷𝑅
model contribute to overall performance improvement? Is
the inclusion of each component necessary?

• RQ3: To evaluate whether the carefully designed information
disentanglement regularization terms work as expected and
if the learned representations satisfy the causality depicted
in Figure 2.

To answer these questions, we performed the following compre-
hensive set of experiments and analyses.

5.1 Experimental Setup
5.1.1 Dataset. In this section, we describe the datasets used to
evaluate and compare the proposed model with other models. The
experiments were conducted on three large real-world datasets,
each containing interaction records from two domains with a com-
mon user. We refer to the domain with fewer interaction records as
the target domain and the other as the source domain. The details
of the datasets used in our experiments are shown in table 1.

Table 1: Statistics of three public datasets. (avg. - average)

Dataset Douban Huawei Amazon
# Shared Users 23,706,610 65297 87,896
#Items(Source) 54,829,040 98600 673,826
# Items(Target) 13,149,185 12615 100,164
#Instances 445,821,389 10903249 1,290,358

Avg.# clicked(Source) 94 18 39
Avg. # clicked(Target) 60 118 36

• Huawei2: We obtained a large-scale dataset from Huawei’s
2022 cross-domain Click-Through Rate (CTR) prediction
competition. It includes extensive features and comprises a
’news’ source domain and an ’advertisement’ target domain.

• Amazon3: We utilized the publicly available Amazon reviews
dataset, focusing on the ’music’ and ’movie’ categories. Com-
mon users were extracted, treating ’movie’ as the source
domain and ’music’ as the target domain.

• Douban4: This dataset was collected from Douban, encom-
passing three popular domains: Douban Book, DoubanMovie,
and Douban Music. ’Movie’ was used as the source domain,
and ’Book’ was used as the target domain in our experiments.
Please note that this dataset is not publicly accessible and
has been employed in a prior study [27].

5.1.2 Baseline. For the baseline models, we include DIN [33] and
its two variants as representatives of single-domain methods. Addi-
tionally, we select the following seven models as representatives of
cross-domain methods:

Single-domain methods.
• DIN [33]: This attention-based pooling model predicts click-
through rates (CTR) effectively by capturing user interests. It
serves as the baseline without knowledge-transfer modules.

2https://www.huawei.com/
3http://jmcauley.ucsd.edu/data/amazon/index_2014.html
4https://www.douban.com/

346



𝐶2𝐷𝑅: Robust Cross-Domain Recommendation based on Causal Disentanglement WSDM ’24, March 4–8, 2024, Merida, Mexico

• DIN (Mix): This variant of the single-domain DIN model
which is trained and tested on a dataset that consists of
overlapped user features from two domains.

• DIN (Finetune): This variant of the single-domain DINmodel
is initially pre-trained on the source domain and subse-
quently fine-tuned on the target domain.

Cross-domain methods : Embedding and Mapping.
• EMCDR [24]: This approach combines matrix factorization
and Bayesian personalized ranking to generate latent factors
and incorporates a nonlinear multi-layer perceptron (MLP)
for ranking.

• PTUPCDR [36]: This method utilizes a meta mapping net-
work as a personalized bridge function based on EMCDR.

Cross-domain methods : Deep Knowledge Transfer
• CSN [15]: Thismodel achieves bidirectional knowledge trans-
fer by combining feature maps in a high-dimensional space.

• CoNet [7]: This model uses cross-connection units and a
shared transfer matrix for fine-grained knowledge transfer.

• MiNet [16]: This model employs a hierarchical attention
mechanism to extract and transfer knowledge between do-
mains.

• ACDR [9]: This model incorporates adversarial learning to
capture both global user preferences and domain-specific
user preferences across different domains.

• MADD [31]: This model utilizes the attention mechanism to
construct personalized preferences by disentangling raw user
behavior into domain-shared and domain-specific features.

5.1.3 Evaluation Metrics. We evaluate the performance of 𝐶2𝐷𝑅
and selected baseline models on different datasets with the follow-
ing ranking metrics:

• AUC over the test set [35]. It is a widely used metric for CTR
prediction. It reflects the probability that a model ranks a
randomly chosen positive instance higher than a randomly
chosen negative instance.

• RelaImpr (Relative Improvement) [22]. It calculates the per-
centage improvement achieved by the target model over the
baseline models. It allows for a comparative analysis of the
performance enhancement.

5.2 Performance Comparisons (RQ1)
We perform 10 random experiments for each model on prediction
tasks across three cross-domain datasets. The reported results rep-
resent the mean performance averaged over these experiments. To
ensure fairness and validity, we adjust the structure of the baseline
models to match the complexity of the model 𝐶2𝐷𝑅. Based on the
experimental results presented in Table 2, we make the following
observations.

The semantic correlation of data in different domains has a sig-
nificant impact on the performance of CDR models. Traditional
methods demonstrate significant improvement in datasets with
strong inter-domain correlation. Specifically, EMCDR and PTUPC
models outperform the baseline model by 0.07% and 1.18%, respec-
tively. However, in the Amazon dataset characterized by weak
domain correlation, traditional methods encounter difficulties in
establishing meaningful connections between the two domains,
resulting in performance degradation 1.08% for EMCDR and 1.18%

for PTUPCDR. In contrast, The proposed 𝐶2𝐷𝑅 shows better per-
formance than traditional baselines in both dataset, which validates
the importance of considering domain differences and transferring
domain-specific knowledge to achieve robust recommendations.

The improvement of model performance in the source domain is
not as significant as in the target domain. For example, the RelImp
of CoNet on Huawei_Ad is +0.21%, but it remains slightly decreases
-0.52% on Huawei_News. This observation can be attributed to the
fact that the source domain contains more interaction records about
the domain-shared representation of user interest. The model pre-
trained on the source domain provides a better initial value for
training the target domain. MADD and 𝐶2𝐷𝑅 achieve relatively
consistent performance improvements in both the source and tar-
get domains in the three data sets. This is due to the design of a
representation decoupling module that facilitates the extraction of
complete domain-shared representations of user interest from both
domains.

5.3 Discussion of Model Variants (RQ2)
To evaluate the efficacy of each loss component in𝐶2𝐷𝑅 model, we
perform ablation experiments on the Huawei and Amazon datasets.
The DIN (single-domain) model serves as the baseline for compari-
son. We compared the five special cases: 𝐶2𝐷𝑅 (1) without L𝑢 that
ensures the independence of domain shared and domain-specific
information; (2) without L𝑣𝑒𝑐 that enforces orthogonality between
domain-shared and domain-specific information in vector spaces;
(3) without L𝑑𝑜𝑚𝑎𝑖𝑛 which involves the constraint of the domain-
shared/specific information classifier; and (4) without L𝑔𝑟𝑎𝑑 that
blocks the transfer of domain irrelevant information.

In Figure 4, we observe that all loss components contribute to the
recommendation performance. Notably, removingL𝑢 andL𝑣𝑒𝑐 has
a more detrimental effect on the model’s performance compared to
removing L𝑑𝑜𝑚𝑎𝑖𝑛 and L𝑔𝑟𝑎𝑑 . Similarly, removing L𝑑𝑜𝑚𝑎𝑖𝑛 has
a more significant negative impact than removing L𝑔𝑟𝑎𝑑 . These
findings confirm the benefits of explicit representation disentangle-
ment in improving CDR performance. Additionally, removing L𝑢
results in significantly poorer performance compared to removing
L𝑣𝑒𝑐 . This result further confirms the importance of effectively
constraining the dependence between domain-shared and domain-
specific information.

5.4 Effectiveness of Disentanglement (RQ3)
In this subsection, we evaluate the performance of cross-domain
recommendation in each domain using the extracted representa-
tions 𝑋𝐴 and 𝑋𝐵 , which represent the user’s domain-specific inter-
ests in the target and source domains, respectively. The analysis
is performed on the Huawei and Douban dataset. The results pre-
sented in Table 3 and 4 reveal the interesting findings. One can
see that the domain-specific representations learned by CoNet ex-
hibit similar recommendation capacity in both domains (i.e., us-
ing 𝑋𝐴 in the target domain and 𝑋𝐵 in the source domain). How-
ever, they failed to achieve better results in their respective do-
mains. In contrast, the domain-specific representations 𝑋𝐴 and 𝑋𝐵

learned by 𝐶2𝐷𝑅 demonstrate strong performance within their
respective domains and exhibit weak performance when applied
to the opposite domains (i.e., using 𝑋𝐴 in the source domain and
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Table 2: Performance comparison of different methods for CDR scenarios on three datasets. The best-performing method is
highlighted in bold font. An asterisk (∗) indicates a p-value < 0.05 for a one-tailed t-test, indicating statistically significant dif-
ferences. The underlining denotes sub-optimal performance. The reported results are averaged over 10 independent repetitions
across all datasets.

Datasets Metircs Single-domain Methods Cross-domain Methods Ours
DIN DIN (Mix) DIN (Finetune) EMCDR PTUPCDR CSN CoNet MiNet ACDR MADD 𝐶2𝐷𝑅

Huawei
Advertisement AUC 0.7793 0.7847 0.7823 0.7695 0.7795 0.7826 0.7797 0.7799 0.7881 0.7871 0.7892∗

RelImp 1.93% 1.07% 0.07% 1.18% 0.14% 0.21% 2.01% 3.11% 2.79% 3.54%

News AUC 0.7859 0.7836 0.7857 0.7862 0.7844 0.7905 0.7934 0.7939 0.7942∗

RelImp -0.80% -0.07% 0.10% -0.52% 1.61% 2.62% 2.80% 2.90%

Amazon
Music AUC 0.6852 0.6823 0.6865 0.6832 0.6835 0.6828 0.6826 0.6875 0.6889 0.6885 0.6898∗

RelImp -1.57% 0.70% -1.08% -0.92% -1.30% -1.40% 1.24% 2.00% 1.78% 2.48%

Movie AUC 0.7214 0.7196 0.7219 0.7210 0.7208 0.7238 0.7249 0.7254 0.7258
RelImp -0.81% 0.23% -0.18% -0.27% 1.08% 1.58% 1.81% 1.99%

Douban
Book AUC 0.7562 0.7578 0.7582 0.7576 0.7588 0.7554 0.7542 0.7585 0.759 0.7582 0.7611∗

RelImp 0.62% 0.78% 0.55% 1.01% -0.31% -0.78% 0.90% 1.09% 0.78% 1.91%

Movie AUC 0.7802 0.7732 0.7856 0.7866 0.7906 0.7894 0.7894 0.7915 0.792
RelImp -2.50% 1.93% 2.28% 3.71% 3.28% 3.28% 4.03% 4.21%

Figure 4: The impact of each loss component of 𝐶2𝐷𝑅 on the
final performance. (a): Results on the Huawei_News (target
domain). (b): Results on the Huawei_Ad (source domain) . (c):
Results on the Amazon_Movie (target domain). (d): Results
on the Amazon_Music (source domain). w/o ’*’ represents
the results on the test set for the variant with the ’*’ loss
component removed from𝐶2𝐷𝑅. The purple dotted dash line
represents the Relative Improvement (RelImpr) of the model
performance compared to DIN (depicted by the gray horizon-
tal dashed line).

𝑋𝐵 in the target domain). These findings highlight the capabil-
ity of 𝐶2𝐷𝑅’s causal-based domain information disentanglement

Table 3: AUC performance of CDR based on domain-specific
information on Huawei dataset.

Input 𝐶2𝐷𝑅 CoNet
Target domain Source domain Target domain Source domain

𝑋𝐴 0.7892 0.71 0.7799 0.72
𝑋𝐵 0.71 0.7942 0.73 0.7874

approach in learning domain-specific representations, enabling
precise and domain-aware recommendations.

6 CONCLUSION
In this paper, we have proposed a novel causal-based framework,
𝐶2𝐷𝑅, to address the challenges of Cross-Domain Recommendation
(CDR) by disentangling domain information from a causal perspec-
tive. Our approach leverages causal relationships to identify and
transfer the most relevant factors, specifically the domain-shared
information, for improving recommendations in different domains.
The proposed𝐶2𝐷𝑅 model constructs a causal graph to capture im-
portant causal connections and utilizes multiple encoders to learn
causal representations for domain-specific interests and domain-
shared information. By employing a domain classifier and sample
re-weighting techniques, 𝐶2𝐷𝑅 disentangles domain-specific and
domain-shared information, enabling selective transfer and enhanc-
ing recommendation performance. Our research contributes a novel
perspective to the field of cross-domain recommendation and opens
avenues for further exploration of causal graph formulation and
disentangled representations for multi-domain recommendation
systems.
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Table 4: AUC performance of CDR based on domain-specific
information on the Douban dataset.

Input 𝐶2𝐷𝑅 CoNet
Target domain Source domain Target domain Source domain

𝑋𝐴 0.761 0.72 0.754 0.73
𝑋𝐵 0.73 0.792 0.74 0.791
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